
OCL for the Specification of Model
Transformation Contracts

Eric Cariou, Raphaël Marvie, Lionel Seinturier, and Laurence Duchien

LIFL - Université des Sciences et Technologies de Lille
UMR CNRS 8022 - INRIA Futurs

59655 Villeneuve d’Ascq Cédex - France
{cariou,marvie,seinturi,duchien}@lifl.fr

Abstract. A major challenge of the OMG Model-Driven Architecture
(MDA) initiative is to be able to define and execute transformations of
models. Such transformations may be defined in several ways and with
various motivations. Our motivation is to specify model transformations
independently of any transformation technology. To achieve this goal, we
propose to define transformation contracts. We argue that model trans-
formation contracts are an essential basis for the MDA, they can be
used for specification, validation and test of transformations. This paper
focuses on the specification of model transformation contracts. We inves-
tigate the way to define them using standard UML and OCL features.
In addition to presenting the approach and some experimental results,
this paper discusses the relevance and limits of standard OCL to define
transformation contracts.

1 Introduction

The Model-Driven Architecture (MDA) initiative of the OMG has made its way
in the software community. Its main goal is to shift the software development
problematic from technical issues to abstract specification of an application. The
MDA defines a process in which Platform Independent Models (PIM) are central.
They set the focus on the business parts of an application, independently of any
technical or architectural target. PIM level models are refined and transformed
in order to define Platform Specific Models (PSM) level models, according to
technical choices.

One major challenge of the MDA is to define and execute transformations
of models. In the past few years, both academic and industrial researchers have
devoted a lot of efforts to study model transformation techniques. As a result,
numerous proposals have emerged. In April 2002, the OMG issued a Request
For Proposal on Query/Views/Transformations (QVT). It promises to deliver a
standardized support for model transformation [11].

In addition, it is important to specify the pre-requisite as well as the expected
output of a model transformation. If MDA encourages the transformation of
models, then first, they can be chained and second, one can expect to find off
the shelf transformations. Design by contract [2,7] has been accepted in the

software community as a foundation for building trusted software components
and applications. We propose to take benefits from this approach in the context
of model transformations and to define model transformation contracts. We argue
that model transformation contracts are an essential basis for the MDA and
more generally for Model-Driven Engineering (MDE). Indeed, they can improve
processes made up of model transformations by specifying and documenting
transformations, validating and testing models and transformations, and also
validating that a set of transformations can be executed in series on a model.

There are several ways for defining these transformation contracts. In this
paper we investigate and discuss the relevance of OCL in this context. Indeed,
we choose to define model transformation contracts using standard modeling or
specification languages only, instead of creating a new language for this purpose.
Even if OCL has now become a multi-purpose language, its basis is still to
define constraints on models. It is then well suited for defining contracts that
are composed of a set of constraints that must be respected by modeling or
software elements.

The rest of this paper is organized as follows. Section 2 gives a general defini-
tion of model transformation contracts. Section 3 investigates the way to express
them by using regular UML and OCL features. Section 4 gives a complete exam-
ple of a model transformation contract. Section 5 proposes OCL extensions to
improve and facilitate contract transformation specifications. Section 6 discusses
related works, before concluding with some future trends.

2 Model Transformation Contracts

The goal of a contract is to define the what and not the how [2,7] of a piece of
software. Applied to model transformations, a contract deals with defining what
the transformation is expected to do, what the constraints for its use are, but
without entering the details of how the transformation is performed.

On a general basis, model transformations are applied to a source model and
produce a target model. The transformation itself is defined as an operation. A
transformation contract specifies those three elements.

We argue that model transformation contracts are an essential basis for the
MDA and more generally for Model-Driven Engineering (MDE). Indeed, they
can improve processes made up of model transformations in several ways:

Specification and documentation A transformation contract allows a de-
signer to specify what a transformation does, under which conditions it can
be applied to a model and what its excepted result is. Such information are
also useful for choosing and applying the proper transformation in a context
of off-the-shelf transformations.

Validation and test Using adequate tools, it becomes possible to check if a
model can be transformed by a given transformation or if a model is a valid
result of this transformation. Transformation contracts can also be used as a
basis for testing models and transformations—they can be used for defining
oracles.

Chaining of transformations The MDA implies to execute multiple trans-
formations to go from a PIM to the code. Transformation contracts can help
in checking if two or more transformations can be executed in sequence. No-
tably, for two chained transformations, constraints on source model of the
second one must be compatible with constraints on target model of the first
one.

2.1 Study of a Transformation

Before giving a precise definition of transformation contracts, we show informa-
tion required to be expressed in a contract through the study of an example.

<< server >>
Server

<< interface >>
Service1

<< interface >>
Service2

<< server >>
Server

<< proxy >>
Proxy2

<< proxy >>
Proxy1

<< interface >>
Service1

<< interface >>
Service2

<< client >>
Client1

<< client >>
Client2

<< client >>
Client1

<< client >>
Client2

1

1

* 1

1*
*

*
1 1

11

Fig. 1. Insertion of proxies between a server and clients

Figure 1 depicts a transformation aimed at introducing a proxy between
clients and a server defined in a model of a software architecture. In this ex-
ample, two kinds of clients are considered: the Client1 class uses services de-
fined in the Service1 interface, and Client2 uses services from Service2 one. The
transformation introduces a particular proxy for each kind of client. Each proxy
implements the service interface used by the client it is associated with1.

The contract of this transformation deals with expressing what the trans-
formation does and under which conditions it can be applied. First of all, this
transformation can only be applied on class diagrams defining clients, interfaces
and servers with appropriate relationships among these elements. The contract
must specify these constraints on source models. Moreover, similar constraints
have to be defined for a target model to be considered as a valid result of the
1 We use stereotyped classes to differentiate clients, servers and proxies. This is only

for simplifying the example. Our methodology of contract specification is not based
on stereotyped classes, it could be applied to any kind of UML diagrams without
particular constraints.

transformation execution: we impose the presence of clients, servers, proxies and
interfaces with specific relationships among them.

Defining constraints that must be matched by source and target models is
not enough for completely specifying this transformation. In our example, the
contract must define that a client on the source model is associated with a server
through an interface. In the meantime, a client on the target model has to be
associated with a proxy through an interface. Given independently, these two
constraints do not prevent a couple of source and target models to be invalid
regarding the aim of the transformation—even if they respect constraints on
source and target models.

For instance, if we consider the target model of our example (right diagram on
figure 1) for which Interface1 and Interface2 have been swapped, this diagram
respect constraints on target models. A client is associated with a proxy through
an interface. But for this target model to be valid, we must specify that the
interface a client is depending on and that its associated proxy is implementing,
is the one this client was depending on in the source model. The transformation
contract must then be able to express relationships between elements of both
source and target models.

2.2 Definition of Model Transformation Contracts

Given the above example, we know what a model transformation contract must
contain two kinds of constraints: First, it must specify constraints on source and
target models and second, it must define constraints on relationships between
source and target model elements.

As a definition, a transformation contract is a tuple of three sets of con-
straints:

– a set of constraints to be matched for a model to be candidate as a source
model of the transformation,

– a set of constraints to be matched for a model to be considered as a valid
target model produced by the transformation, and

– a set of constraints on the relationships and evolution of elements from the
source to the target model.

3 Specification of Model Transformation Contracts using
UML and OCL

There are several ways and techniques to define model transformation contracts.
We have chosen to define them using as much as possible standard modeling
or specification languages. Our motivation was to avoid the definition of a new
language for this purpose. We first investigate the use of standard UML [9] and
OCL [13] for defining transformation contracts. Our first experimentations have
been restricted to the transformation of UML class diagrams. However, this

approach can be applied to other UML diagrams such as sequence or state ones
and even to MOF models.

OCL in version 2.0 [8] is now becoming a multi-purpose language. It can
be used for defining constraints of course, but it is also a powerful querying
language. However, its basis is still to define constraints on models. It is then
well suited for defining contracts that are composed of a set of constraints that
must be respected by modeling or software elements. In this section, we show
that specifying precise constraints on source and target models is straightforward
in OCL at the metamodel level. However, specifying constraints on relationships
between source and target model elements is not as simple.

3.1 Definition of Constraints on Source and Target Models

Defining constraints on source and target models is achieved using metamodel-
ing techniques. Constraints on UML diagrams are expressed at the level of the
UML metamodel. For instance, adding constraints on a class diagram is done by
defining constraints on the metamodel, specifying the structure and elements of
class diagrams. So, constraints on source and target models can be expressed by
constraining through a specialization of the UML metamodel. This can be done
using a profile as proposed in the UML specification [9]. Such a profile defines
concepts specific to a given modeling context as well as relationships among
these concepts and standard UML features. In order to precisely and fully define
constraints attached to profile elements, invariants written in OCL have to be
specified.

For instance, a profile can define the concepts of the previous example: Client,
Server and Proxy. These stereotyped classes are defined as extensions of the Class
class defined in the UML metamodel. Specifying precise relationship constraints
among these concepts is achieved by writing OCL expressions on the specialized
metamodel within this profile.

3.2 Definition of Constraints on Relationships between Source and
Target Model Elements

In order to express constraints dealing with relationships between source and
target model elements, we must be able to reference both source and target
models in OCL expressions. We have identified two ways for defining such OCL
expressions:

– specifying in OCL the transformation operation through pre- and post-
conditions in a “standard way”,

– Writing OCL expressions that can directly handle both source and target
models under the form of packages.

Each method presents both advantages and drawbacks. We discuss the first
method in [3] and present the second one in this paper.

Specifying the Transformation Operation with Pre and Post-Conditions.
The idea is to define a transformation operation in such a way that the pre-
condition statement deals with the state of the model before the transformation,
i.e. the source model, and the post-condition with the state of the model after
the transformation, i.e. the target model. The OCL @pre construction enables
model elements before the transformation operation call to be referenced in
the postcondition specification. Source model elements are then handleable in
the postcondition. So, in the postcondition, both source and target models are
referenced which enables relationships between elements of both models to be
defined.

For the proxy addition example we describe above, here is the main form of
the OCL transformation operation specification:

context Client::proxyAddition()
post: -- constraints on the target model and source model elements (with the

-- @pre OCL construction)

This solution is elegant in the sense that it corresponds to the “standard
way” of specifying an operation using OCL. It is then somehow logical to try to
express a transformation operation using this standard approach.

However, this solution has major drawbacks. It notably implies that both
source and target models conform to the same (or close enough) metamodel. This
major constraint leads to the fact that only particular transformations can be
specified—such as model refinement, where only elements are added during the
transformation. Transformations involving source and target models conforming
each one to very different metamodels cannot be specified using this approach.
For instance, it is not possible to specify a transformation of a UML class diagram
into a Java program because the UML and Java metamodels are completely
different.

Transformation operations defined this way must be attached to a classifier
of the common metamodel. Often, this allows a simplification of the writing of
some OCL expressions with shorter navigation on the metamodel by choosing
the more adequate classifier.

Another advantage of this first solution is to keep an implicit relation between
the source and the target model. Indeed, we can decide for instance that all
source model elements and their relationships that are not constrained by the
post-condition are kept unchanged in the target model as they was2. This avoid
the writing of some extra OCL expressions.

Allowing Direct Handling of Both Source and Target Model Elements.
A simple way to realize a direct handling of both source and target model el-
ements is to define constraints against elements of two packages. One package
contains the source model and the other one the target model. The OCL expres-
sions are such that each package is directly handleable in these expressions.
2 Under the condition that it remains coherent with the constraints on the target

models as defining in the target profile.

Then, there are no particular constraints on the choice of the classifier on
which these OCL expressions are attached. A simple way to apply this second
approach is to define the transformation operation in the following manner:

context Package::proxyAddition(Package source) : Package
post: -- source parameter: references the source model

-- OCL result pseudo-variable: references the target model

The transformation operation is attached to the Package metaclass or any
other classifier. It takes the source model as parameter and returns a model
corresponding to the target model. OCL expressions defining constraints and
relationships among source and target model elements are then defined in the
post-condition.

In the next section, we describe a full example of a transformation contract
following this second approach underlying advantages and drawbacks of this
method. First of all, compared to the first solution described above, the main
advantage is to be able to define the contract of any kind of transformation,
including the ones with very different source and target metamodels.

The main drawback is that we need to be able to express that an element
of a source model is the same element or is mapped onto an element of the
target model. For instance, a UML class can be mapped onto a Java class when
specifying a transformation of a UML class diagram onto a Java program. OCL
does not permit to express these mappings and must then be extended with a
new construction (such as the <∼> operator defined in [5]).

The other drawback is that we need also to express all necessary mappings
or equalities among source and target elements and their relationships. In the
context of the first solution, this mapping is more or less implicit. Indeed, by
default, it is possible to consider that all relationships and elements that are not
constrained by OCL expressions are kept as they were.

Comparison of the Two Methods. Here is a synopsis of both method ad-
vantages and drawbacks:

1. Specifying the transformation operation in a standard OCL way
– Pros:

• Implicit mapping among source and target model elements
• Simplification of the OCL expressions through the right choice of the

classifier owning the operation transformation
– Cons:

• Do not permit all kinds of transformation to be specified
2. Direct handling of both source and target models

– Pros:
• Can define any kind of transformation

– Cons:
• Need an explicit mapping among source and target model elements

and their relationships

• Need an OCL extension for defining this mapping
• More verbose

To summarize, the first method gives a simplified definition of relationships
among source and target elements but cannot be used for all transformations.
On the other hand, the second method can define the contract of any kind of
transformation but is more verbose and implies more complex specifications.

4 Example of Contract Definition

This section presents the complete contract of the proxy addition transformation
described in section 2.1. For specifying relationships between source and target
model elements, the second approach we have presented above (direct handling
of both source and target models) is used. The specification of the same contract
using the first approach (standard specification using OCL of the transforma-
tion operation) is done in [3]. To begin with, we present our simplified UML
metamodel. Its goal is only to simplify the writing of OCL expressions at the
metamodel level.

4.1 A Simplified UML Metamodel

The UML 2.0 metamodel [9] is quite complex. In particular, the complete class
diagram specifying the UML is very large. As discussed in previous section, trans-
formation contracts are expressed at the metamodel level, i.e. in the context of
the UML metamodel. In order to ease experimentation and understanding, a
simplified UML metamodel—enough for experimenting the transformation dis-
cussed in this paper—has been defined. In addition to removing all the irrelevant
elements of the UML metamodel for our example, some elements and relation-
ships have been slightly modified.

The simplified UML metamodel is defined by the class diagram depicted
by figure 2. In order to be complete, the semantics of the metamodel elements
should be given, by notably specifying in OCL the well-formedness rules.

4.2 Definition of Profiles for Target and Source Models

A transformation contract is composed of three sets of constraints. In this sec-
tion, we specify the first two sets: on source and target models, i.e, profiles
defining source and target metamodels3.

Servers, clients and proxies are defined as stereotyped classes, using profiles,
as shown on figure 3. The ClientServer profile defines the stereotypes for source
models and the ClientProxyServer defines the stereotypes for target models. These
profiles state that the three stereotypes are specialization of the Class class of
3 These profiles are exactly the same as the ones in [3]. Indeed, the difference be-

tween the two approaches in the way to specify the contract is only related to the
specification of the relationships between source and target model elements.

ModelElementProfile

mult: Multiplicity

AssociationEnd

1

*

*1

1

1

**

1

2

*

1

1

*

Interface

Class
Operation

Attribute

Association

name: String

Package

operations

type

implements

isImplementedBy

dependsOn

owner

owner attributes

ownedElements

Fig. 2. Our simplified UML metamodel

the UML metamodel. The ClientProxyServer profile is a kind of extension of the
ClientServer profile. In addition to the concepts of client and server that are the
same in both profiles, it defines the proxy concept.

Class
<< stereotype >>

Client

<< stereotype >>
Server Class

<< stereotype >>
Server

<< stereotype >>
Client

<< stereotype >>
Proxy

<< profile >> ClientServer

<< profile >> ClientProxyServer

Fig. 3. Specializations of the UML metamodel using profiles

In order to complete the definition of each profile, we have to define additional
constraints on the profiled UML metamodels. To do so, invariants are written
in OCL for each profile.

Figure 4 defines invariants for the ClientServer profile. It states that each
client must be associated with at least one server (line 5) and must depend on
at least one interface (line 6). For each interface a client is depending on, at
least one server implementing this interface must be associated with the client
(line 7). Moreover, each server implementing this interface must be associated
with the client (line 8). For simplifying the definition of this constraint, we use
an operation helper for model navigation called hasClassRefWith that returns
true if the element on which it applies has an association with the element passed

1 package ClientServer
2 context Client inv:
3 let servers = self.associationEnd.association.associationEnd.class

–> select (c | c.oclIsTypeOf(Server)) in
4 let interfaces = self.dependsOn in
5 servers –> notEmpty() and
6 interfaces –> notEmpty() and
7 interfaces –> forAll (i | servers.implements –> includes (i) and
8 servers –> forAll (s | s.implements –> includes (i)

implies s.hasClassRefWith(self)))
9 endpackage

Fig. 4. OCL invariants of the ClientServer profile

as parameter4. All these OCL constraints define association rules among clients
and servers through interfaces of services offered by servers.

1 package ClientProxyServer
2 context Client inv:
3 let servers = self.associationEnd.association.associationEnd.class

–> select (c | c.oclIsTypeOf(Server)) in
4 let proxies = self.associationEnd.association.associationEnd.class

–> select (c | c.oclIsTypeOf(Proxy)) in
5 let interfaces = self.dependsOn in
6 servers –> isEmpty() and
7 proxies –> notEmpty() and
8 interfaces –> notEmpty() and
9 interfaces –> forAll (i | proxies.implements –> includes (i) and
10 proxies –> forAll (p | p.implements –> includes (i)

implies p.hasClassRefWith(self)))

11 context Proxy inv:
12 self.association.associationEnd.association.class –> select (c |

c.oclIsKindOf(Server)) –> size() = 1
13 endpackage

Fig. 5. OCL invariants of the ClientProxyServer profile

In the same way, we have to define association rules among clients, servers
and proxies for the ClientProxyServer profile, i.e. the target metamodel. Figure 5
defines these rules with OCL constraints. They state that each client must not
be associated with any server (line 6), but must be associated with at least one
proxy (line 7) and must depend on at least one interface (line 8). Each interface

4 This operation is specified in OCL in [3], on figure 10, page 12.

a client is depending on (line 9) must be implemented by a proxy associated
with the client. The proxy implementing this interface must also be associated
with this client (line 10). Finally, each proxy must be associated with one and
only one server (line 12).

4.3 Specification of the Transformation Operation

The last set of constraints of the contract deals with expressing relationships
between source and target models. With the second approach we use, we need
to express that an element of the source model has to be mapped onto an element
of the target model. For this purpose, we propose to add the following extension
to OCL: ens1 -> mappedOnto (ens2)
It expresses that each element of the ens1 collection must map to an element
of the ens2 collection. Both collections have the same size and the mapping is
from one element to one element.

A mapping can also be expressed for two model elements:
elt1.mappedOnto(elt2)
It must return true if there is a mapping between elt1 and elt2 elements, false
otherwise. This second OCL extension can be seen as a boolean query operation
of the ModelElement metaclass. Indeed, by construction of UML profiles, all
profile or package elements are direct or indirect specializations of this metaclass.
Then this operation can be applied to any kind of model element couples. For
precisely defining the mapping constraints between elements in a given context,
this operation can be specified using OCL.

Figure 6 specifies in OCL the proxyAddition transformation operation. It
takes as parameter the source model (as a package) and returns the target model
(also as a package). First of all, line 2 expresses that the source package must
conform to the ClientServer package (or profile) and line 3 that the target model
must conform to the ClientProxyServer one.

Line 4 expresses that each client of the source model has to map to a client
of the target model5. Same kind of constraints could be added for servers.

Line 5 expresses that each element of a subset of the source model elements
must either exist in the target model (as a clone) or be mapped onto an element of
the target model. This expresses that elements of the source model are conserved
as is or are mapped in the target model. Associations that were connecting
servers to clients have not to respect these constraints because they are removed
through the transformation6 (this is the reason of the reject expression in
5 This expression is here to show a simple usage of our mapping expression. Indeed, on

both metamodels, Client classes are identical, by construction of the profiles. Then
we could instead specify that clients of the target model are clones of the ones of the
source model. We can use for that the equality symbol “=” to express that two model
elements are identical in both packages (this also includes that their metaclasses are
identical). For less ambiguity, we could add a isCloneOf OCL operation to express
these constraints of equality.

6 AssociationEnd elements associated with these associations should also be removed
of the set. This is not specified here for simplifying the operation specification.

1 context Package::proxyAddition(Package source) : Package
2 pre: source.oclIsTypeOf(Profile) and source.name=”ClientServer”

post:
3 result.oclIsTypeOf(Profile) and result.name=”ClientProxyServer” and
4 source.modelElement –> select (me | me.oclIsKindOf(Client)) ->

mappedOnto (result.modelElement –> select (me | me.isKinfOf(Client))) and
5 source.modelElement –> reject(me | me.oclIsKindOf(Association) and

me.oclAsType(Association).connectClientServer())
–> forAll (me | result.modelElement –> exists(me2 |

me2 = me or me2.mappedOnto(me))) and
6 result.modelElement –> select (me | me.oclIsKindOf(Client)) –>

forAll (cl | cl.oclAsType(Client).dependsOn –> forAll (i |
7 let sourceServer = (source.modelElement –> select (me |

me.oclIsKindOf(Interface) and me.oclAsType(Interface) = i))
–> first().oclAsType(Interface).isImplementedBy in

8 let server = (result.modelElement –> select (me |
me.mappedOnto(sourceServer)) –> first() in

9 let proxy = self.newProxy() in
10 server.oclIsTypeOf(Server) and
11 proxy.implements –> includes (i) and
12 proxy.hasClassRefWith(cl) and
13 proxy.hasClassRefWith(server)))

Fig. 6. Specification in OCL of the proxyAddition() transformation operation

which connectClientServer() is a primitive returning true if the association
is connecting a client to a server; this primitive, not shown here due to the lack
of place, is also specified in OCL).

The rest of the specification deals with defining that after the transformation,
as we explain in section 2.1, clients are still depending on the same interface. For
each interface a client is depending on (line 6), a new proxy is created (we use
an utility operation4 to be able to reference this new proxy in a variable, even
if this solution is not elegant) and must be associated with the client (lines 9
and 12). The proxy must implement the interface (line 11). This proxy must also
be associated with the server the client is associated with (line 13). This server
is the model element that maps the server the client was depending on in the
source model through the interface (lines 7 and 8).

5 OCL Extensions and OCL Expression Simplification

Through the discussion about the use of OCL for transformation operation spec-
ifications and the example of proxy addition, one can notice that OCL suffers
from some drawbacks and is not necessary well designed for some parts of trans-
formation contract definition.

OCL is well-suited for precisely defining constraints and invariants at the
metamodel level. However, navigation over the metamodel can become rapidly

complex in some cases. Even in the context of our simplified metamodel, some
navigation expressions are a bit verbose to write. A solution in order to limit
this problem would be to propose for a metamodel a set of utility operations for
simplifying the navigation at the metamodel level (in the same way as we define
the hasClassRefWith operation for our UML metamodel). The QVT merge
group revised submission [11] also proposes to simplify the syntax of some OCL
expressions when they are too verbose.

A problem we have to face when defining a contract (using the second ap-
proach) is to express that an element of the target model is a mapping of a
source model element. As proposed in section 4.3, a mapping operator has to be
added to OCL for this purpose.

6 Related Works

In the past few years, an important amount of effort has been devoted to the
study of transformation techniques. As result, numerous proposal and transfor-
mation engines have emerged. [4] gives a detailed review of existing approaches
and their classification. The current interest for model transformation is partially
driven by the OMG Request for Proposal on Query/Views/Transformations
(QVT) [10] which promises to deliver a standardized way for transforming mod-
els. A merge of initial submissions to this RFP is on the way to be standard-
ized [11]. All these techniques rely on the evaluation of transformations. We have
not found in the literature techniques for specifying a model transformation us-
ing a contract as we propose in this paper.

However, the QVT merge group submission [11] proposes to define transfor-
mations through relations and mappings. A relation defines a transformation in a
specification purpose and a mapping is a realization of a relation in an executable
purpose. QVT relations seems to be a good basis in specifying model transfor-
mation contracts and could be complementary to our pure OCL approach.

6.1 OCL Use in Transformation Techniques

The QVT merge group submission proposes to use OCL as a query language
and to define an OCL-based language for describing patterns of model elements
to be transformed. Other works such as [12] have also already studied the use of
OCL in the specification of model transformations. However, they are not based
upon plain OCL use and, as other approaches, their goal is to define executable
transformations and not transformation contracts.

Kleppe and Warmer have been strongly involved in the definition and evo-
lution of OCL [13]. In [5] they propose a model transformation language model
partly based on OCL. Here too, they propose a language for defining executable
transformations.

Finally, OCL is often used as a query language in transformation techniques.
However we have not found works using OCL as a constraint language for defin-
ing model transformation contracts as we do.

6.2 Alternatives to OCL as Contract Definition Language

In our context of modeling using standards such as UML, OCL is a natural
base for specifying model transformation contracts. However, it is of course pos-
sible to use other techniques for defining these contracts. For instance, B [1]
is a powerful and well-known method for building validated software through
formal specifications and refinement. Some recent works deal with applying B
to UML diagrams and specifications. It would be interesting to see how model
transformation contracts could be defined in this context.

On a more implementation-oriented side, the Java Modeling Language (JML [6])
allows definition of contracts on Java programs or Java-based interfaces. Using
JML for defining model transformation contracts is another interesting way to
explore; notably if tools realized for validating models and transformations are
written in Java.

7 Conclusion

Model transformation contracts aim at defining what a model transformation
does, under which conditions it can be applied and what its expected result
is. These contracts are important in model-driven engineering processes: They
would improve the specification and documentation of transformations, the val-
idation and test of models and transformations, and also in checking that a set
of transformations can be executed in sequence on a model.

We have defined a transformation contract as a tuple of three elements:

– a set of constraints to be matched for a model to be candidate as a source
model of the transformation,

– a set of constraints to be matched for a model to be considered as a valid
target model produced by the transformation, and

– a set of constraints on the relationships between elements of source and
target model elements.

There are several ways and techniques to define these three sets. In this
paper, we focus on standard UML and OCL features to do so. We also focus on
transformations of UML class diagrams into UML class diagrams but of course
transformation contracts can be defined for any kind of models or diagrams.
Constraints on source and target models are defined at the UML metamodel
level by defining profiles enriched with OCL invariants. OCL is well-suited for
precisely defining constraints on models. However, it suffers from too verbose
statements. This could be solved by adding operations for navigating over a
metamodel and simplifying the syntax of some OCL expressions, as also proposed
by the QVT merge-group submission.

Relationships between elements of source and target models are a bit more
difficult to express in OCL. We have described two approaches for this purpose.
The first one uses “standard operation specification” in OCL but cannot be
used for expressing every transformation contract. The second approach solves

this problem but requires an extension of OCL for expressing mappings between
models with different metamodels. This extension requires some work to be
formally specified.

To summarize, OCL through a relatively small extension and some syntax
and metamodel navigation expression simplifications, is a good basis in the spec-
ification of model transformation contracts.

In the future, we plan to study other examples of transformations, including
transformations of any kind of UML diagrams such as sequence diagrams or
statecharts. We will also study transformation contract definitions between two
different technological domains or spaces. This will imply to clearly define and
specify the OCL extension we discussed in section 4.3.

We also plan to build or use tools to validate models against transformation
contracts. This includes checking if a model can be transformed using a given
transformation (i.e. if it respects constraints on source model) and if a model can
be considered as a valid result of a transformation (i.e. if it respects constraints
on target model and on relationships with the source model).

References

1. J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University
Press, 1996.

2. A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making Components
Contract Aware. IEEE Computer, 32(7):38–45, July 1999.

3. E. Cariou, R. Marvie, L. Seinturier, and L. Duchien. Model Tranformation Con-
tracts and their Definition in UML and OCL. Technical Report 2004-08, LIFL,
April 2004.

4. K. Czarnecki and S. Helsen. Classification of Model Transformation Approaches.
In Proceedings of the OOPSLA 2003 Workshop on Generative Techniques in the
Context of MDA, 2003.

5. A. Kleppe, J. Warmer, and W. Bast. MDA Explained, the Model Driven Architec-
ture: Practise and Promise. Addison-Wesley, 2003.

6. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary Design of JML: A Behavioral
Interface Specification Language for Java. Technical Report 98-06x, Iowa State
University, 2003.

7. B. Meyer. Applying ”Design by Contract”. IEEE Computer (Special Issue on
Inheritance & Classification), 25(10):40–52, October 1992.

8. OMG. UML 2.0 OCL 2nd revised submission, version 1.6, January 6, 2003, 2003.
9. OMG. UML 2.0 Specifications. 2003.

10. OMG. Query/Views/Transformations RFP, 2004. OMG Document ad/2002-04-
10.

11. OMG QVT-Merge Group. Revised Submission for MOF 2.0
Query/Views/Transformations RFP, 2004. version 1.6 (2004/08/16).

12. D. Pollet, D. Vojtisek, and J.-M. Jézéquel. OCL as a Core UML Transformation
Language. In WITUML: Workshop on Integration and Transformation of UML
models, ECOOP 2002, 2002.

13. J. Warmer and A. Kleppe. The Object Constraint Language – Second Edition,
Getting Your Models Ready for MDA. Addison-Wesley, 2003.

